Abstract

Many of the devices used in Internet-of-Things (IoT) applications are energy-limited, and thus supplying energy while maintaining seamless connectivity for IoT devices is of considerable importance. In this context, we propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from the reconfigurable intelligent surface (RIS)-aided unmanned aerial vehicle (UAV) communications. In particular, in the first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in the second phase, the UAV collects data from the IoT devices through information transmission. To characterise the agility of the UAV, we consider two scenarios: a hovering UAV and a mobile UAV. Aiming at maximising the total network sum-rate, we jointly optimise the trajectory and the power allocation of the UAV, the energy harvesting scheduling of IoT devices, and the phase-shift matrix of the RIS. We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimisation problem of maximising the total network sum-rate. Numerical results illustrate the effectiveness of the UAV’s flying path optimisation and the network’s throughput of our proposed techniques compared with other benchmark schemes. Given the strict requirements of the RIS and UAV, the significant improvement in processing time and throughput performance demonstrates that our proposed scheme is well applicable for practical IoT applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.