Abstract

Molecular devices constructed using corrugated graphene nanoribbons (GNRs) are proposed in the paper. Recursive Green's function calculations show that the intrinsic ripples in graphene and the external electric field energy play important roles on the electron transport properties. Negative differential resistance is observed in zigzag corrugated GNRs. With the wavelength of the ripples decreasing, both the zigzag and armchair corrugated GNRs exhibit ON/OFF characteristics. On applying external electric field, current decreases dramatically in zigzag corrugated GNRs. These findings show that corrugated GNRs can be used to design functional nanoscale devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call