Abstract
Cell death and subsequent inflammation are 2 key pathological changes occurring in cerebral ischemia. Active microglia/macrophages play a double-edged role depending on the balance of their M1/M2 phenotypes. Necrosis is the predominant type of cell death following ischemia. However, how necrotic cells modulate the M1/M2 polarization of microglia/macrophages remains poorly investigated. Here, we reported that ischemia induces a rapid RIPK3/MLKL-mediated neuron-dominated necroptosis, a type of programmed necrosis. Ablating RIPK3 or MLKL could switch the activation of microglia/macrophages from M1 to the M2 type in the ischemic cortex. Conditioned medium of oxygen-glucose deprivation (OGD)-treated wild-type (WT) neurons induced M1 polarization, while that of RIPK3−/− neurons favored M2 polarization. OGD treatment induces proinflammatory IL-18 and TNFα in WT but not in RIPK3−/− neurons, which in turn upregulate anti-inflammatory IL-4 and IL-10. Furthermore, the expression of Myd88—a common downstream adaptor of toll-like receptors—is significantly upregulated in the microglia/macrophages of ischemic WT but not of RIPK3−/− or MLKL−/− cortices. Antagonizing the function of Myd88 could phenocopy the effects of RIPK3/MLKL-knockout on the polarization of microglia/macrophages and was neuroprotective. Our data revealed a novel role of necroptotic neurons in modulating the M1/M2 balance of microglia/macrophages in the ischemic cortex, possibly through Myd88 signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.