Abstract

Receptor-interacting protein kinase 1 (RIPK1) is up-regulated in patients with neurodegenerative diseases. Our study aimed to explore the underlying mechanisms that involved in the neurotoxic function of RIPK1 in Parkinson’s disease (PD). MPP+/MPTP-induced PD cellular and mice models were used in this study. The results showed that RIPK1 was high expressed and activated in MPP+-treated SH-SY5Y cells and MPTP-induced PD mice. Overexpression of RIPK1 facilitated cell apoptosis, necrosis, inflammation response, ROS production and mitochondrial dysfunction in MPP+- treated SH-SY5Y cells, while the RIPK1 inhibitor Nec-1s has an opposite effect. In addition, the Apoptosis-signaling kinase-1 (ASK1)/c-Jun N-terminal kinase (JNK) signalling pathway was activated during the overexpression of RIPK1, and inhibiting the ASK1/JNK signal by the ASK1 inhibitor partially reversed the decline of cell viability, the increase of cell apoptosis, necrosis and inflammation induced by RIPK1 overexpression in MPP+-treated SH-SY5Y cells. Further studies suggested that the inhibition of RIPK1 by Nec-1s largely alleviated the behavioural impairment in PD mice. Hence, our study indicated that the RIPK1 inhibitor Nec-1s has neuroprotective effects against PD through inactivating the ASK1/JNK signalling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call