Abstract

Native riparian vegetation communities have declined downstream of large water infrastructure like dams and diversions, owing to water management operations that prevent successful seedling colonization and recruitment. Altered timing and magnitude of reservoir releases to fulfill competing water demands often lead to reduced peak discharges and flow recession rates that do not support native riparian reproduction processes. To achieve short-term ecosystem function in highly regulated rivers an alternative method might be restoration planting, whereby success depends on identifying appropriate planting location and spatial extents. This study aims to provide a methodology to inform resource managers about the extent of possible natural seedling recruitment under average and wet hydrologic conditions, as well as constrain restoration planting operational uncertainties. Results from field surveys and simulations showed limited favorable areas for successful riparian seedling recruitment under regulated flows, regardless of hydrologic conditions in the basin. However, wet (11.4 ha) hydrologic conditions were more (approximately 11 times) favorable than average (1 ha) conditions for seedling recruitment. Furthermore, model results identified the location and spatial extent (25.6 ha) of favorable restoration planting areas during average flow. This extent is approximately 25 times larger than natural recruitment during an average (hydrological) year and even twice that for natural recruitment for a wet year. This suggests that ground operational activities guided by numerical modeling may effectively constrain planting uncertainties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call