Abstract

A model based on theKLS factors of the Universal Soil Loss Equation (USLE) accurately predicted temporal dynamics and relative peak levels of suspended solids, turbidity, and phosphorus in an agricultural watershed with well-protected streambanks and cultivation to the stream edge. Fine suspended solids derived from surface runoff appeared to be a major component of the suspended solids in this stream. The model did not predict the same parameters in a watershed with unstable channel substrates, exposed streambanks, and heterogeneity in riparian vegetation and channel morphology. The rate of increase in concentration of the water quality parameters was higher than predicted in areas without riparian vegetation and with unstable substrates. Peak levels were higher than predicted where unstable channel substrates occurred, and potential energy of the stream was high because of stream alterations (removal of near-stream vegetation and creation of a uniform, straight channel). Timing of the peak levels of suspended solids, turbidity, and phosphorus in these areas seemed related to major flushes of discharge due to delayed inputs from the surface or subsurface or both or to rapid urban drainage. Higher suspended solids concentration in this stream seemed to involve larger quantities of large particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.