Abstract

A vegetation chronosequence spanning over 300 years was established in unconstrained reaches of the lower Queets River in Olympic National Park, Washington, USA, for an examination of riparian successional patterns. The Queets is an unconstrained, dynamic, mountain river located within a temperate rain forest environment. Ongoing channel movements create intricate patterns in the physical structure of the valley. Twenty-one plots containing a total of 4359 trees were mapped and measured for structural and crown characteristics. Snags, logs, and understory vegetation were also quantified. Recent alluvial deposits are colonized primarily by early-successional trees Salix sitchensis and Alnus rubra. Conifer seedlings, primarily Picea sitchensis, generally invade after the initial cohort of hardwood trees begins senescence: 20–30 years for Salix and 40–60 years for Alnus. Through accumulation of sediments from floods and channel downcutting, surfaces become perched above the reach of annual floods after 40–80 years and are then slowly colonized by late successional tree species Acer circinatum, Acer macrophyllum, and Tsuga heterophylla. Diverse, old-growth forests ultimately develop after 200–250 years, containing some of the largest known trees in the Pacific Northwest. However, canopy and stem densities remain lower than comparative Pseudotsuga menziesii forests from the nearby Cascade Mountains. Vast individual crowns can develop, with occasional Picea up to 25 m wide and 70 m deep. Individual stands may accumulate >200 000 m3/ha of canopy volume— among the highest recorded on earth. Mixed among the generalized successional sequence are variations created by uncommon channel movements. Avulsions followed by channel incision form cobblefields in abandoned channels or other surfaces which are isolated from subsequent inundation and sediment deposition. These cobblefields embark on a different successional trajectory, which often includes conifer seedlings present in the initial cohort. Ultimately, whatever the initial trajectory, soils become productive due to soil conditioning by Alnus and the decomposition of other plant material. These biophysical complexities, interconnected patterns, and system-scale resilience are summarized in a multiple-pathway successional model that may be applicable to floodplain riparian forests throughout much of the Pacific coastal ecoregion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.