Abstract

Local and regional habitat conditions associated with agricultural activity can fundamentally alter aquatic ecosystems. Increased nutrient inputs, channelization and reduced riparian habitat both upstream and locally contribute to the degradation of stream ecosystems and their function. Here, we examine stream food webs in watersheds that feed into Lake Erie to determine the effects of agricultural land cover on major food web energy pathways and trophic structure. Given that higher agricultural intensity can increase nutrient runoff and reduce the riparian zone and litter in-fall into streams, we predicted that generalist fish would derive less energy from the terrestrial pathway and become more omnivorous. Consistent with these predictions, we show that both mean terrestrial energy use and trophic position of the resident top consumer, creek chub (Semotilus atromaculatus), decrease with local agricultural intensity but not with watershed-level agriculture intensity. These findings suggest that local riparian buffers can maintain trophic structure even in the face of high whole-watershed agricultural intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call