Abstract

We show assembly of low and high multimers of HeLa cell nuclear protein, RIP60, at the origin of bidirectional replication (OBR) identified by Burhans, Vassilev, Caddle, Heintz and DePamphilis in Chinese hamster ovary cells. RIP60 binds a 5′-ATT-3′ reiterated sequence downstream of the OBR and a second, homologous ATT sequence of opposite orientation situated within the OBR zone. Specifically bound structures were studied by conventional electron microscopy (EM) and quantitative scanning transmission electron microscopy (STEM). Dimers and multiples of dimers link the downstream binding site that overlaps a bent DNA sequence and the homologous upstream OBR sequence, looping out 700 bp of intervening DNA. Superposed dimers are found at individual unlinked sites, stabilized presumably through protein-protein interaction, and such superposition appears to occur also in the basic link structure. Along the loop, single crossovers and extended twists are observed by conventional EM. By STEM, loop DNA is laterally compacted, with diameter and mass equivalent to double-duplex DNA strands. Supercoiled 736 bp and 5243 bp circular DNAs assume similar laterally compacted geometries that are mostly absent from relaxed forms. These observations parallel the compacted, interwound superhelices viewed by cryo-electron microscopy in vitrified solutions containing magnesium ions, and provide structural evidence in agreement with that from conventional EM for superhelical tension in RIP60 loop DNA. Loop superhelicity could arise as a topological response to linking and suggests a functional role for link formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.