Abstract
The authors of this paper have used the theory of Riordan matrices to introduce the notion of a Riordan graph in [3]. Riordan graphs are proved to have a number of interesting (fractal) properties, and they are a far-reaching generalization of the well known and well studied Pascal graphs and Toeplitz graphs, and also some other families of graphs. The main focus in [3] is the study of structural properties of families of Riordan graphs obtained from certain infinite Riordan graphs.In this paper, we use a number of results in [3] to study spectral properties of Riordan graphs. Our studies include, but are not limited to the spectral graph invariants for Riordan graphs such as the adjacency eigenvalues, (signless) Laplacian eigenvalues, nullity, positive and negative inertia indices, and rank. We also study determinants of Riordan graphs, in particular, giving results about determinants of Catalan graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.