Abstract

A relationship between a pair of Laurent series and Riordan arrays is formulated. In addition, a type of generalized Sheffer groups is defined by using Riordan arrays with respect to power series with non-zero coefficients. The isomorphism between a generalized Sheffer group and the group of the Riordan arrays associated with Laurent series is established. Furthermore, Appell, associated, Bell, and hitting-time subgroups of the groups are defined and discussed. A relationship between the generalized Sheffer groups with respect to different type of power series is presented. The equivalence of the defined Riordan array pairs and generalized Stirling number pairs is given. A type of inverse relations of various series is constructed by using pairs of Riordan arrays. Finally, several applications involving various arrays, polynomial sequences, special formulas and identities are also presented as illustrative examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.