Abstract

Tubulointerstitial fibrosis is the consequence of an injury characterized by the accumulation of excess collagen and other extracellular matrix components, resulting in the destruction of the normal kidney architecture and subsequent loss of function. A transcription factor Sp1, originally described as a ubiquitous transcription factor, is involved in the basal expression of extracellular matrix genes and may, therefore, be important in fibrotic processes. Here, we report on the design of a ring-Sp1 decoy oligonucleotide, containing the consensus Sp1 binding sequence in a single decoy molecule without an open end, to create a novel therapeutic strategy for fibrosis. The ring-Sp1 decoy oligonucleotide is highly resistant to degradation by nucleases or serum compared to the conventional phosphorothioated double-stranded Sp1 decoy oligonucleotide, and effectively suppressed the expression of transforming growth factor-beta1 and fibronectin, the binding of Sp1 to the promoter region of these genes, and proliferation in response to serum in normal rat kidney fibroblasts. Moreover, treatment with the ring-Sp1 decoy in vivo significantly attenuates extracellular matrix gene expression in the rat kidney in which a unilateral ureteral obstruction had been induced. These results suggest that the ring-Sp1 decoy oligonucleotide represents promising therapeutic alternative to the conventional treatment of fibrotic disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.