Abstract
ABSTRACTWe present a generalization of the ascending and descending chain condition on one-sided ideals by means of divisibility on chains. We say that a ring R satisfies ACCd on right ideals if in every ascending chain of right ideals of R, each right ideal in the chain, except for a finite number of right ideals, is a left multiple of the following one; that is, each right ideal in the chain, except for a finite number, is divisible by the following one. We study these rings and prove some results about them. Dually, we say that a ring R satisfies DCCd on right ideals if in every descending chain of right ideals of R, each right ideal in the chain, except for a finite number of right ideals, is divisible by the previous one. We study these conditions on rings, in general and in special cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.