Abstract
It is well-known that every finite ring with non-zero-divisors has order not exceeding the square of the order n of its left zero-divisor set. Unital rings whose order is precisely n2 have been described already. Here we discuss finite rings with relatively larger zero-divisor sets, namely those of order greater than n3/2. This is achieved by describing the class of all finite rings with left composition length two at most, and using a theorem relating the left composition length of a finite ring to the size of its left zero-divisor set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.