Abstract

It is shown that every pure-injective right module over a ring R is a direct sum of lifting modules if and only if R is a ring of finite representation type and right local type. In particular, we deduce that every left and every right pure-injective R-module is a direct sum of lifting modules if and only if R is (both sided) serial artinian. Several examples are given to show that this condition is not left–right symmetric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.