Abstract

The object of this article is associate to automorphism-invariant modules that are invariant under any automorphism of their injective hulls with cyclic modules and cyclic modules have cyclic automorphism-invariant hulls. The study of the first sequence allows us to characterize rings whose cyclic right modules are automorphism-invariant and to show that if R is a right Kothe ring, then R is an Artinian principal left ideal ring in case every cyclic right R-module is automorphism-invariant. The study of the second sequence leads us to consider a generalization of hypercyclic rings that are each cyclic R-module has a cyclic automorphism-invariant hull. Such rings are called right a-hypercyclic rings. It is shown that every right a-hypercyclic ring with Krull dimension is right Artinian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.