Abstract

It is well known that if every cyclic right module over a ring is injective, then the ring is semisimple artinian. This classical theorem of Osofsky promoted a considerable interest in the rings whose cyclics satisfy a certain generalized injectivity condition, such as being quasi-injective, continuous, quasi-continuous, or [Formula: see text]. Here we carry out a study of the rings whose cyclic modules are [Formula: see text]-modules. The motivation is the observation that a ring [Formula: see text] is semisimple artinian if and only if every [Formula: see text] -generated right [Formula: see text]-module is a [Formula: see text]-module. Many basic properties are obtained for the rings whose cyclics are [Formula: see text]-modules, and some structure theorems are proved. For instance, it is proved that a semiperfect ring has all cyclics [Formula: see text]-modules if and only if it is a direct product of a semisimple artinian ring and finitely many local rings, and that a right self-injective regular ring has all cyclics [Formula: see text]-modules if and only if it is a direct product of a semisimple artinian ring, a strongly regular ring and a [Formula: see text] matrix ring over a strongly regular ring. Applications to the rings whose [Formula: see text]-generated modules are [Formula: see text] -modules, and the rings whose cyclics are ADS or quasi-continuous are addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call