Abstract
The article examines the role of Gabriel filters of ideals in the ontext of semiprime f-rings. It is shown that for every 2-convex semiprime f-ring Aand every multiplicative filter B of dense ideals the ring of quotients of A by B, namely the direct limit of the Hom A (I, A) over all I∈ B, is an l-subring of QA, the maximum ring of quotients. Relative to the category of all commutative rings with identity, it is shown that for every 2-convex semiprime f-ring A qA, the classical ring of quotients, is the largest flat epimorphic extension of A. If Ais also a Prüfer ring then it follows that every extension of Ain qA is of the form S -1A for a suitable multiplicative subset S. The paper also examines when a Utumi ring of quotients of a semiprime f-ring is obtained from a Gabriel filter. For a ring of continuous functions C(X), with Xcompact, this is so for each C(U) and C *(U), when Uis dense open, but not for an arbitrary direct limit of C(U),taken over a filter base of dense open sets. In conclusion, it is shown that, for a complemented semiprime f-ring A, the ideals of Awhich are torsion radicals with respect to some hereditary torsion theory are precisely the intersections of minimal prime ideals of A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.