Abstract

In a series of papers, we propose a theory to explain the formation and properties of rings and spirals in barred galaxies. The building blocks of these structures are orbits guided by the manifolds emanating from the unstable Lagrangian points located near the ends of the bar. In this paper, the last of the series, we present more comparisons of our theoretical results to observations and also give new predictions for further comparisons. Our theory provides the right building blocks for the rectangular-like bar outline and for ansae. We consider how our results can be used to give estimates for the pattern speed values, as well as their effect on abundance gradients in barred galaxies. We present the kinematics along the manifold loci, to allow comparisons with the observed kinematics along the ring and spiral loci. We consider gaseous arms and their relations to stellar ones. We discuss several theoretical aspects and stress that the orbits that constitute the building blocks of the spirals and rings are chaotic. They are, nevertheless, spatially well confined by the manifolds and are thus able to outline the relevant structures. Such chaos can be termed `confined chaos' and can play a very important role in understanding the formation and evolution of galaxy structures and in galactic dynamics in general. This work, in agreement with several others, argues convincingly that galactic dynamic studies should not be limited to the study of regular motions and orbits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.