Abstract

Some lattice-based public key cryptosystems allow one to transform ciphertext from one lattice or ring representation to another efficiently and without knowledge of public and private keys. In this work we explore this lattice transformation property from cryptographic engineering viewpoint. We apply ciphertext transformation to compress Ring-LWE ciphertexts and to enable efficient decryption on an ultra-lightweight implementation targets such as Internet of Things, Smart Cards, and RFID applications. Significantly, this can be done without modifying the original encryption procedure or its security parameters. Such flexibility is unique to lattice-based cryptography and may find additional, unique real-life applications.Ciphertext compression can significantly increase the probability of decryption errors. We show that the frequency of such errors can be analyzed, measured and used to derive precise failure bounds for n-bit error correction. We introduce XECC, a fast multi-error correcting code that allows constant time implementation in software.We use these tools to construct and explore TRUNC8, a concrete Ring-LWE encryption and authentication system. We analyze its implementation, security, and performance. We show that our lattice compression technique reduces ciphertext size by more than 40% at equivalent security level, while also enabling public key cryptography on previously unreachable ultra-lightweight platforms.The experimental public key encryption and authentication system has been implemented on an 8-bit AVR target, where it easily outperforms elliptic curve and RSA-based proposals at similar security level. Similar results have been obtained with a Cortex M0 implementation. The new decryption code requires only a fraction of the software footprint of previous Ring-LWE implementations with the same encryption parameters, and is well suited for hardware implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.