Abstract
Recently, Haley and Grant introduced the concept of reversible codes — a class of binary linear codes that can reuse the decoder architecture as the encoder and encodable by the iterative message-passing algorithm based on the Jacobi method over $\\mathbb{F}_2$. They also developed a procedure to construct parity check matrices of a class of reversible codes named type-I reversible codes by utilizing properties specific to circulant matrices. In this paper, we refine a mathematical framework for reversible codes based on circulant matrices through a ring theoretic approach. This approach enables us to clarify the necessary and sufficient condition on which type-I reversible codes exist. Moreover, a systematic procedure to construct all circulant matrices that constitute parity check matrices of type-I reversible codes is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.