Abstract

Using the theory of Witt vectors, we define ring structures on several well-known groups of arithmetic functions, which in another guise are formal Dirichlet series. The set of multiplicative arithmetic functions over a commutative ring R is shown to have a unique functorial ring structure for which the operation of addition is Dirichlet convolution and the operation of multiplication restricted to the completely multiplicative functions coincides with point-wise multiplication. The group of additive arithmetic functions over R also has a functorial ring structure. In analogy with the ghost homomorphism of Witt vectors, there is a functorial ring homomorphism from the ring of multiplicative functions to the ring of additive functions that is an isomorphism if R is a Q -algebra. The group of rational arithmetic functions, that is, the group generated by the completely multiplicative functions, forms a subring of the ring of multiplicative functions. The latter ring has the structure of a Bin ( R ) -algebra, where Bin ( R ) is the universal binomial ring equipped with a ring homomorphism to R. We use this algebra structure to study the order of a rational arithmetic function, as well the powers f α for α ∈ Bin ( R ) of a multiplicative arithmetic function f. For example, we prove new results about the powers of a given multiplicative arithmetic function that are rational. Finally, we apply our theory to the study of the zeta function of a scheme of finite type over Z .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.