Abstract
Synchronization is a universal phenomenon, occurring in systems as disparate as Japanese tree frogs and Josephson junctions. Typically, the elements of synchronizing systems adjust the phases of their oscillations, but not their positions in space. The reverse scenario is found in swarming systems, such as schools of fish or flocks of birds; now the elements adjust their positions in space, but without (noticeably) changing their internal states. Systems capable of both swarming and synchronizing, dubbed swarmalators, have recently been proposed, and analyzed in the continuum limit. Here, we extend this work by studying finite populations of swarmalators, whose phase similarity affects both their spatial attraction and repulsion. We find ring states, and compute criteria for their existence and stability. Larger populations can form annular distributions, whose density we calculate explicitly. These states may be observable in groups of Japanese tree frogs, ferromagnetic colloids, and other systems with an interplay between swarming and synchronization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.