Abstract

The study presents a method for designing phase masks, specifically the ring-shaped segmentation method, which can be employed in creating the modulation phase for specialized point spread functions (PSFs), such as multi-focus PSFs and those with axial encoding functions. An algorithm for phase inversion optimization is introduced to enhance the optical transfer function efficiency of the designed phase mask, which is based on the Fresnel approximation imaging inverse operation and iterative Fourier transform algorithm. The ring-shaped segmentation phase design approach effectively combines individual phases, resulting in unified PSFs with unique properties. The promising outcomes demonstrated by the designed PSFs are truly remarkable. The refined phase masks and experimental verification further validate the effectiveness of this groundbreaking approach. This advancement in ring-shaped segmentation method development has significant potential for real-world applications, representing a noteworthy contribution to the field of optical imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.