Abstract

The reaction between H3+ and CO is important in understanding the H3+ destruction mechanism in the interstellar medium. In this work, thermal rate coefficients for the H3+ + CO and D3+ + CO reactions are calculated using ring-polymer molecular dynamics (RPMD) on a high-level machine-learning potential energy surface. The RPMD results agree well with the classical molecular dynamics results, where nuclear quantum effects are completely ignored, whereas the agreement between the RPMD results and the previous quasi-classical trajectory is good only at low temperatures. The calculated [HCO+]/[HOC+] product branching ratios decrease as the temperature increases, and the product branching is exclusively determined by the initial collisional orientation, which governs the formation of an ion-dipole complex, H3+···CO or H3+···OC, that dissociates into H2 + HCO+ or H2 + HOC+, respectively, via a direct mechanism. However, the contribution of the indirect mechanism via the rearrangement between H3+···CO and H3+···OC increases as the temperature increases, although its absolute fraction is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.