Abstract

A ring polymer molecular dynamics (RPMD) method is proposed for the calculation of the dissociative chemisorption rate coefficient on surfaces. The RPMD rate theory is capable of handling quantum effects such as the zero-point energy and tunneling in dissociative chemisorption, while it relies on classical trajectories for the simulation. Applications to H2 dissociative chemisorption are demonstrated. For the highly activated process on Ag(111), strong deviations from Arrhenius behavior are found at low temperatures and attributed to tunneling. On Pt(111), where the dissociation has a barrierless pathway, the RPMD rate coefficient is found to agree with the experimentally derived thermal sticking coefficient within a factor of 2 over a large temperature range. Significant quantum effects are also found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call