Abstract

Although great successes have been achieved, the preparation of closed-loop recyclable polyesters with high working temperatures still remains as a big challenge. Herein, we present the syntheses of a series of enantiopure bicyclic ether-ester monomers by upcycling of poly(3-hydroxybutyrate) bioplastic. The "living"/controlled ring-opening polymerizations of these enantiopure monomers to produce stereoregular polyesters with controlled molecular weights and well-defined chain ends were achieved. The effects of stereoconfiguration and substituent on polymerization kinetics and thermodynamics as well as the thermal properties of resultant polyesters were investigated. Of note, the stereoregular polyesters are semi-crystalline materials with melting temperatures up to 176 °C, even higher than the commodity polyolefin plastics. These polyesters can be depolymerized back to recover pristine monomers, thus successfully establishing a closed-loop life cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.