Abstract

AbstractPhosphido‐diphosphine Group 3 metal complexes 1–4 [(o‐C6H4PR2)2P‐M(CH2SiMe3)2; R = Ph, 1: M = Y, 2: M = Sc; R = iPr, 3: M = Y, 4: M = Sc] are very efficient catalysts for the ring‐opening polymerization (ROP) of cyclic esters such as ε‐caprolactone (ε‐CL), L‐lactide, and δ‐valerolactone under mild polymerization conditions. In the ROP of ε‐CL, complexes 1–4 promote quantitative conversion of high amount of monomer (up to 3000 equiv) with very high turnover frequencies (TOF) (∼4 × 104 molCL/molI h) showing a catalytic activity among the highest reported in the literature. The immortal and living ROP of ε‐CL and L‐lactide is feasible by combining complexes 1–4 with 5 equiv of 2‐propanol. Polymers with controlled molecular parameters (Mn, end groups) and low polydispersities (Mw/Mn = 1.05–1.09) are formed as a result of fast alkoxide/alcohol exchange. In the ROP of δ‐valerolactone, complexes 1–4 showed the same activity observed for lactide (L‐ and D,L‐lactide) producing high molecular weight polymers with narrow distribution of molar masses. Complexes 1–4 also promote the ROP of rac‐β butyrolactone affording atactic low molecular weight poly(hydroxybutyrate) bearing unsaturated end groups probably generated by elimination reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call