Abstract

AbstractThe aim of this work is the kinetic and thermodynamic study (by differential scanning calorimetry (DSC) and proton nuclear magnetic resonance (1H‐NMR)) of the polymerization of ε‐caprolactone initiated by ammonium decamolybdate. By means of isothermal kinetics, enthalpies of reaction in the range 150–160°C, as well as constant rates of polymerization (using an nth‐order kinetics function model), were determined. From an Arrhenius plot, activation energy (Ea = 85.3 kJ/mol) and preexponential factor (A = 1.78 × 108 min−1) were estimated. Using dynamic methods, crystallization and melting temperatures for the polymer obtained in situ were derived. Kinetic data for polymerization (obtained by 1H‐NMR) were fitted to 13 different model reaction functions. It was found that power law equations represent better the conversion versus time plots for this system. On the basis of experimental facts, a coordination‐insertion mechanism involving molybdenum(V) species is proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.