Abstract
We study solitons of the two-dimensional nonlinear Dirac equation with asymmetric cubic nonlinearity. We show that, with the nonlinearity parameters specifically tuned, a high degree of localization of both spinor components is enabled on a ring of certain radius. Such ring Dirac soliton can be viewed as a self-induced nonlinear domain wall and can be implemented in nonlinear photonic graphene lattice with Kerr-like nonlinearities. Our model could be instructive for understanding localization mechanisms in nonlinear topological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.