Abstract

We propose a ring-core photonic quasi-crystal fiber (RC-PQCF) featuring a ring-shaped fiber core and two symmetrical SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> stress-applying parts (SAPs). By optimizing the mole percentage of GeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and geometrical parameters of the fiber, the design supports 34 full vector polarization modes (FV-PMs). The effective refractive index difference ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Delta {n_{eff}}$</tex-math></inline-formula> ) of adjacent FV-PMs is larger than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$1.07 \times {10^{ - 4}}$</tex-math></inline-formula> at 1550 nm. The confinement loss ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${\mathrm{\alpha }}$</tex-math></inline-formula> ) of FV-PMs is less than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${10^{ - 6}}$</tex-math></inline-formula> , which is sufficient to confine the light field in the ring-core. Through numerical analysis, broadband performance is investigated subsequently in the 1500–1600 nm. The dispersion ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${D_\lambda }$</tex-math></inline-formula> ) of FV-PMs is less than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$138.14{\mathrm{\ ps}} \cdot {\mathrm{n}}{{\mathrm{m}}^{ - 1}} \cdot {\mathrm{k}}{{\mathrm{m}}^{ - 1}}$</tex-math></inline-formula> and maintains a flat trend. The mode field area ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${A_{eff}}$</tex-math></inline-formula> ) of FV-PMs is larger compared to single mode fibers and the nonlinear coefficient ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${\mathrm{\gamma }}$</tex-math></inline-formula> ) of FV-PMs is within ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$6.97 \times {10^{ - 4}}$</tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$1.54 \times {10^{ - 3}}$</tex-math></inline-formula> ) <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${{\mathrm{m}}^{ - 1}} \cdot {{\mathrm{W}}^{ - 1}}{\mathrm{\ }}$</tex-math></inline-formula> in the 1500–1600 nm. The fiber is a promising design for mode division multiplexing (MDM) that supports the MIMO-free processing and improves the transmission capacity and spectral efficiency.

Highlights

  • WITH the forthcoming capacity crunch of optical fiber communication system, mode division multiplexing (MDM) techniques have attracted great attention [1]

  • Based on mature multiplexing technologies such as timedivision multiplexing (TDM), wavelength-division multiplexing (WDM) and space-division multiplexing (SDM) [2]–[4], MDM using different types of fiber modes provides another degree of freedom to increase the transmission capacity

  • Due to the higher refractive index contrast and the good design flexibility, it is more convenient for PCFs to realize full vector polarization modes (FV-PMs)

Read more

Summary

INTRODUCTION

WITH the forthcoming capacity crunch of optical fiber communication system, mode division multiplexing (MDM) techniques have attracted great attention [1]. In 2017, researchers presented a PANDA ring-core fiber with 10 polarizationmaintaining modes [24] It has a ring-shaped fiber core with two SPAs. In the same year, a polarization-maintaining supermode fiber with quasi-elliptically arranged high refractive index cores was proposed in Ref [26]. A polarization-maintaining supermode fiber with quasi-elliptically arranged high refractive index cores was proposed in Ref [26] This design supports 20 polarization modes and holds better manufacturing flexibility. In 2018, Wang et al designed a PANDA-type elliptical-core multimode fiber supporting 24 fully lifted eigenmodes [19]. Due to the higher refractive index contrast and the good design flexibility, it is more convenient for PCFs to realize FV-PMs. In 2019, a photonic crystal fiber supporting fully separated eigenmodes was proposed [27]. The simulation is performed in a full-vector finite-element mode solver with a perfect matching layer (PML) as the boundary condition

FIBER STRUCTURE
MODE PROPERTIES AND BROADBAND CHARACTERISTICS
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.