Abstract

The first examples of ring-closing metathesis (RCM) reactions of a series of terminal alkene-derived cyclic phosphazenes have been carried out. The tetrakis-, hexakis-, and octakis(allyloxy)cyclophosphazenes (NPPh(2))(NP(OCH(2)CH=CH(2))(2))(2) (1), N(3)P(3)(OCH(2)CH=CH(2))(6) (2), and N(4)P(4)(OCH(2)CH=CH(2))(8) (3) and the tetrakis(allyloxy)-S-phenylthionylphosphazene (NS(O)Ph)[NP(OCH(2)CH=CH(2))(2)](2) (4) were prepared by the reactions of CH(2)=CHCH(2)ONa with the cyclophosphazenes (NPPh(2))(NPCl(2))(2), N(3)P(3)Cl(6), and N(4)P(4)Cl(8) and the S-phenylthionylphosphazene (NS(O)Ph)(NPCl(2))(2). The reactions of 1-4 with Grubbs first-generation olefin metathesis catalyst Cl(2)Ru=CHPh(PCy(3))(2) resulted in the selective formation of seven-membered di-, tri-, and tetraspirocyclic phosphazene compounds (NPPh(2))[NP(OCH(2)CH=CHCH(2)O)](2) (5), N(3)P(3)(OCH(2)CH=CHCH(2)O)(3) (6), and N(4)P(4)(OCH(2)CH=CHCH(2)O)(4) (7) and the dispirocyclic S-phenylthionylphosphazene compound (NS(O)Ph)[NP(OCH(2)CH=CHCH(2)O)](2) (8). X-ray structural studies of 5-8 indicated that the double bond of the spiro-substituted cycloalkene units is in the cis orientation in these compounds. In contrast to the reactions of 1-4, RCM reactions of the homoallyloxy-derived cyclophosphazene and thionylphosphazene (NPPh(2))[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (9) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (10) with the same catalyst resulted in the formation of 11-membered diansa compounds NPPh(2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (11) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (13) and the intermolecular doubly bridged ansa-dibino-ansa compounds 12 and 14. The X-ray structural studies of compounds 11 and 13 indicated that the double bonds of the ansa-substituted cycloalkene units are in the trans orientation in these compounds. The geminal bis(homoallyloxy)tetraphenylcyclotriphosphazene [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CH(2))(2)] (15) upon RCM with Grubbs first- and second-generation catalysts gave the spirocyclic product [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)] (16) along with the geminal dibino-substituted dimeric compound [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)(2)PN][NPPh(2)](2) (17) as the major product. The dibino compound 17, upon reaction with the Grubbs second-generation catalyst, was found to undergo a unique ring-opening metathesis reaction, opening up the bino bridges and partially converting to the spirocyclic compound 16.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call