Abstract

Bis-, tris-, and tetrakisuracil-substituted 12-, 13-, 17-, and 21-membered macrocyclic nucleoside analogues with polyether linkages, including C2-symmetric molecules, have been synthesized through coupling of two appropriately allylated sugar derivatives, derived from D-glucose, followed by a sequential ring-closing metathesis reaction using Grubbs catalysts, double-bond reduction, and nucleoside base insertion under Vorbrüggen reaction conditions. Spectroscopic studies on the interaction of these nucleoside analogues with small molecules, such as the alkaloids berberine and palmatine and the DNA intercalator ethidium bromide, revealed a change in the absorbance and fluorescence of the small molecules suggesting the potential use of these nucleoside molecules as a carrier of small molecules in biological systems. Circular dichroism studies indicated that the complexes of the nucleosides with small molecules undergo aggregation/self-organization. This has been further evidenced by a SEM experiment showing the binding of berberine with one of the nucleoside derivatives, which confirms the occurrence of secondary structure reorganization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.