Abstract

X-ray-induced acoustic computed tomography (XACT) is a hybrid imaging modality for detecting X-ray absorption distribution via ultrasound emission. It facilitates imaging from a single projection X-ray illumination, thus reducing the radiation exposure and improving imaging speed. Nonuniform detector response caused by the interference between multichannel data acquisition for ring array transducers and amplifier systems yields ring artifacts in the reconstructed XACT images, which compromises the image quality. We propose model-based algorithms for ring artifacts corrected XACT imaging and demonstrate their efficacy on numerical and experimental measurements. The corrected reconstructions indicate significantly reduced ring artifacts as compared to their conventional counterparts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call