Abstract
Instance matching, which aims at discovering the correspondences of instances between knowledge bases, is a fundamental issue for the ontological data sharing and integration in Semantic Web. Although considerable instance matching approaches have already been proposed, how to ensure both high accuracy and efficiency is still a big challenge when dealing with large-scale knowledge bases. This paper proposes an iterative framework, RiMOM-IM (RiMOM-Instance Matching). The key idea behind this framework is to fully utilize the distinctive and available matching information to improve the efficiency and control the error propagation. We participated in the 2013 and 2014 competition of Ontology Alignment Evaluation Initiative (OAEI), and our system was ranked the first. Furthermore, the experiments on previous OAEI datasets also show that our system performs the best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.