Abstract

Predicting the macroscopic permeability of porous media is critical in various scientific and engineering applications. This study proposes a novel model that combines Random Forest (RF) and rime-ice (RIME) optimization algorithm, denoted RIME-RF-RIME, to predict permeability based on six key features covering fluid phase dimensions, geometric characteristics, surrounding phase permeability, and media porosity. After the input space simplification process using RIME, the RF model achieves high predictive accuracy with a coefficient of determination (R2) of 0.980. Furthermore, SHapley Additive exPlanations (SHAP) values are employed to decipher these features' importance and interaction effects on the model's predictions. The analysis reveals that porosity, permeability of the porous phase, and the size of the fluid phase perpendicular to the flow direction exert the most significant individual influences. This study not only unveils crucial insights into the underlying mechanisms governing permeability in porous media but also contributes to developing interpretable and reliable predictive models for related applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.