Abstract
Utilizing intelligent transportation infrastructures can significantly improve the throughput of intersections of Connected Autonomous Vehicles (CAV), where an Intersection Manager (IM) assigns a target velocity to incoming CAVs in order to achieve a high throughput. Since the IM calculates the assigned velocity for a CAV based on the model of the CAV, it's vulnerable to model mismatches and possible external disturbances. As a result, IM must consider a large safety buffer around all CAVs to ensure a safe scheduling, which greatly degrades the throughput. In addition, IM has to assign a relatively lower speed to CAVs that intend to make a turn at the intersection to avoid rollover. This issue reduces the throughput of the intersection even more. In this paper, we propose a space and time-aware technique to manage intersections of CAVs that is robust against external disturbances and model mismatches. In our method, RIM, IM is responsible for assigning a safe Time of Arrival (TOA) and Velocity of Arrival (VOA) to an approaching CAV such that trajectories of CAVs before and inside the intersection does not conflict. Accordingly, CAVs are responsible for determining and tracking an optimal trajectory to reach the intersection at the assigned TOA while driving at VOA. Since CAVs track a position trajectory, the effect of bounded model mismatch and external disturbances can be compensated. In addition, CAVs that intend to make a turn at the intersection do not need to drive at a slow velocity before entering the intersection. Results from conducting experiments on a 1/10 scale intersection of CAVs show that RIM can reduce the position error at the expected TOA by 18X on average in presence of up to 10% model mismatch and an external disturbance with an amplitude of 5% of max range. In total, our technique can achieve 2.7X better throughput on average compared to velocity assignment techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.