Abstract

Macrocycle-based glycoclusters, on account of their promising anti-adhesive properties against bacteria, are potential therapeutic alternatives to classic antibiotics through the much less explored anti-adhesive strategy. In this study, a series of constitutionally-pure pentavalent glycoclusters was prepared by conjugating assorted azido-carbohydrates onto a penta-propargyl rim-differentiated pillar[5]arene (RD-P[5]) scaffold through Cu(I)-catalyzed azide–alkyne cycloaddition “click” reactions. Their binding towards therapeutically relevant bacterial lectins, such as LecA and LecB from Pseudomonas aeruginosa and concanavalin A (ConA), were evaluated subsequently by isothermal titration calorimetric studies. Most of these isomer-free RD-P[5] pentavalent glycoclusters, except the fucosylated ones, display good affinities to lectins. Nonetheless, the dissociation constants observed are similar to those displayed by an analogous pentavalent glycocluster consisting of four P[5] constitutional isomers, in which the RD-P[5] component merely accounts for 7% in the mixture. Our results revealed that high constitutional purity is not essential for achieving effective multivalent interactions between P[5]-based glycoclusters and lectins, presumably as a result of the conformationally labile nature of the P[5] scaffold. This information provides valuable design principles for low-cost and facile syntheses of glycosylated P[5]s for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call