Abstract

Rill erosion easily occurs on tilled surfaces because the soil shear resistance is less than the runoff shear stress. However, rill erosion formation and evolution on tilled surfaces under upslope inflow conditions remain unclear. The objective of this study was to investigate the rill formation process and rill erosion amount on tilled surfaces via flow scouring under different inflow rates (4, 6, and 8 L min−1) at a 15° slope. Close-range photogrammetric technology was applied to measure the rill morphology during the experiments. The results suggested that the rill formation process due to inflow could be divided into two distinct stages, namely, before and after runoff reached the downslope end, i.e., stages I and II, respectively. At stage I, runoff washed soil particles along the downslope direction. In this process, due to limited transport capacity of runoff, washed soil particles were deposited at the runoff head and formed a soil mound, which blocked the flow path, after which the runoff direction changed within the 6.7°− 50.6° range with an average moving distance of 0.62 m. As a result, a curved rill and a series of soil mounds were left on the surface. The inflow rate affected rill morphology by influencing the runoff direction change angle and runoff moving distance between the mounds on the surface. Herein, the rill formation process is referred to as downslope-trending erosion by inflow (DTEI). At stage II, runoff reached the downslope end, and a rill channel was formed throughout the slope. Thereafter, DTEI was largely reduced, and headward erosion was strengthened. As a result, the rill morphology quickly changed, such as the rill depth and rill width, which gradually increased with ongoing headward erosion. During DTEI, the rill paths were curved due to sediment deposition, and the sediment deposition conditions varied under the different inflow rates. Therefore, the rill curvature (RC) differed (1.039 ± 0.014). The RC decreased with headward erosion progression at stage II. The total sediment yield (TSY) increased with increasing inflow rate. Under inflow rates ranging from 4 to 6 L min−1 and 6–8 L min−1, the TSY increased 2.1–2.4 times. Consequently, DTEI on tilled surfaces significantly affects the initial rill morphology and evolution at the later stage. Hence, on slopes, its role should be considered in rill erosion assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.