Abstract

Abstract With the growing importance of environmental issues in our society, extremely low-permeability geotechnical materials are being studied increasingly for their long-term stability and effectiveness in retarding the transport of hazardous wastes. Relatively rapid measurements of the permeability and specific storage of the materials, using relatively low hydraulic gradients, can be obtained with a constant flow pump and the corresponding theoretical analysis proposed by Morin and Olsen (1987). However, the accuracy of this method is limited because their theoretical analysis does not take into account the storage capacity of the experimental system. This paper presents a more general theoretical analysis and shows how it can be used to determine not only the permeability and specific storage of a test specimen, but also the storage capacity of the experimental system. Experimental data are presented that illustrate the accuracy and efficiency of the general theoretical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call