Abstract
In this paper, a rigorous computational method to compute solutions of piecewise-smooth systems using a functional analytic approach based on Chebyshev series is introduced. A general theory, based on the radii polynomial approach, is proposed to compute crossing periodic orbits for continuous and discontinuous (Filippov) piecewise-smooth systems. Explicit analytic estimates to carry the computer-assisted proofs are presented. The method is applied to prove existence of crossing periodic orbits in a model nonlinear Filippov system and in the Chua’s circuit system. A general formulation to compute rigorously crossing connecting orbits for piecewise-smooth systems is also introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.