Abstract

In this study, we show that transformation optics formalism can be used to rigorously model a wide range of twisted anisotropic fibers, which could only be analyzed using perturbative methods. If the material anisotropy of fibers has an intrinsic origin or is induced by axially or helically symmetric physical factors, then they can be transformed into a form usable in rigorous two-dimensional (2D) modeling. We demonstrate the effectiveness of the proposed approach in 2D modeling of the propagation characteristics of first-order eigenmodes in twisted and spun fibers with high linear birefringence. We derive the equivalent electric permittivity tensors for such fibers in the helical coordinate system and study the evolution of the first-order modes toward vortex modes with increasing twist rate. The obtained results confirm that the proposed method can reveal phenomena that cannot be predicted by analytical approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.