Abstract

A model of a randomly disordered system with site-diagonal random energy fluctuations is introduced. It is an extension of Wegner'sn-orbital model to arbitrary eigenvalue distribution in the electronic level space. The new feature is that the random energy values are not assumed to be independent at different sites, but free. Freeness of random variables is an analog of the concept of independence for noncommuting random operators. A possible realization is the ensemble of randomly rotated matrices at different lattice sites. The one- and two-particle Green functions of the proposed Hamiltonian are calculated exactly. The eigenstates are extended and the conductivity is novanishing everywhere inside the band. The long-range behavior and the zero-frequency limit of the two-particle Green function are universal with respect to the eigenvalue distribution in the electronic level space. The solutions solve the CPA equation for the one- and two-particle Green function of the corresponding Anderson model. Thus our (multisite) model is a rigorous mean-field model for the (single-site) CPA. We show how the Lloyd model is included in our model and treat various kinds of noises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call