Abstract

We present the electromagnetic fields of vector Pearcey beams by employing the vector angular spectrum representation. The beams maintain the inherent properties of autofocusing performance and inversion effect. Based on the generalized Lorenz-Mie theory and Maxwell stress tensor approach, we derive the partial-wave expansion coefficients of arbitrary beams with different polarization and the rigorous solution to evaluate the optical forces. Furthermore, we investigate the optical forces experienced by a microsphere placed in vector Pearcey beams. We study the effects on the longitudinal optical force arising from the particle size, permittivity and permeability. This exotic curved trajectory transport of particles by vector Pearcey beams may find applications in the case where the transport path is partly blocked.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call