Abstract

Based on the generalized Lorenz-Mie theory and the Maxwell stress tensor approach we present the first rigorous full-wave solution of the optical forces acting on spherical microparticles immersed in a two-dimensional vector Airy beam beyond the paraxial approximation. The critical aspect lies in evaluating efficiently and accurately the partial wave expansion coefficients of the incident Airy beam, which are achieved by using the vector angular spectrum representation for a variety of polarizations. The optical field distributions are then simulated to show the self-accelerating and self-healing effects of the Airy beam. The dielectric and gold microparticles are shown to be trapped within the main lobe or the nearby side-lobes mostly by the transverse gradient optical force while driven forward along the parabolic trajectory of the Airy beam by the longitudinal scattering force. It is thus demonstrated theoretically that the vector Airy beam has the capability of precisely transporting both dielectric and metallic microparticles along the prespecified curved paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.