Abstract

The linear noise approximation (LNA) offers a simple means by which one can study intrinsic noise in monostable biochemical networks. Using simple physical arguments, we have recently introduced the slow-scale LNA (ssLNA), which is a reduced version of the LNA under conditions of timescale separation. In this paper we present the first rigorous derivation of the ssLNA using the projection operator technique and show that the ssLNA follows uniquely from the standard LNA under the same conditions of timescale separation as those required for the deterministic quasi-steady-state approximation. We also show that the large molecule number limit of several common stochastic model reduction techniques under timescale separation conditions constitutes a special case of the ssLNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.