Abstract

The photonics platform has been considered increasingly promising for neuromorphic computing, due to its potential in providing low latency and energy efficient large-scale parallel connectivity. Phase change materials (PCMs) have been recently employed to introduce all-optical non-volatile memory in integrated photonic circuits, especially finding application as non-volatile weighting element in photonic artificial neural networks. Interestingly, these weighting elements can potentially be used as building blocks for large-scale networks that can autonomously adapt to their input, i.e. presenting the property of plasticity, similarly to the biological brain. In this work, we develop a computationally efficient dynamical model of a silicon ring resonator (RR) enhanced by a phase change material, namely Ge2Sb2Te5 (GST). We do so starting from two existing dynamical models (of a silicon RR and of a GST thin film on a straight silicon waveguide), but extending the optical equations to properly account for the high absorption and asymmetry in the ring due to the phase change material. Our model accounts for silicon nonlinear effects due to free carriers and temperature, as well as for the phase change of GST, whose energy efficiency and optical contrast can be enhanced by the RR resonant behaviour. We also restructure the optical equations so that the model can be efficiently employed in a modular way within a commercial software for system-level photonics simulations. Moreover, exploiting the developed model, we explore several design parameters and show that both speed and energy efficiency of memory operations can be enhanced by factors from six to ten. Also, we show that the achievable optical contrast due to GST phase change can be increased by more than a factor ten by leveraging the resonant properties of the RR, at the expense of higher optical loss. Finally, by exploiting the nonlinear dynamics arising in silicon RR networks, we show that a strong contrast is achievable while preserving energy efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call