Abstract

Torque ripple is a very essential index for evaluating the effectiveness of a switched reluctance motor (SRM). Many common design strategies for reducing torque ripples of a SRM are changing the excitation trigger angle of stator windings, delaying the cut-off time of winding excitation, adjusting the ratio of arc angle between stator and rotor, and changing the geometric shape of rotor. However, the output torque or the efficiency of the SRM may drop as the above design strategies are solely adopted. In this paper, a hybrid design model which is obtained by the Taguchi Method for optimally designing a SRM with lower torque ripple and higher efficiency is presented. A 12S/8P motor is taken as a study case, and the 3D finite element method (FEM) is applied to analyze the characteristics of the motor and optimize the design process. The results have shown that the proposed method can achieve the design goal of obtaining a high-performance SRM for light electric vehicle applications. Keyword: Switched reluctance motor, Torque ripple, Taguchi method, Finite element method

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.