Abstract

El Niño-Southern Oscillation (ENSO) is the most predominant interannual variability in the tropics, significantly impacting global weather and climate. In this paper, a framework of low-order conceptual models for the ENSO is systematically derived from a spatially-extended stochastic dynamical system with full mathematical rigor. The spatially-extended stochastic dynamical system has a linear, deterministic, and stable dynamical core. It also exploits a simple stochastic process with multiplicative noise to parameterize the intraseasonal wind burst activities. A principal component analysis based on the eigenvalue decomposition method is applied to provide a low-order conceptual model that succeeds in characterizing the large-scale dynamical and non-Gaussian statistical features of the eastern Pacific El Niño events. Despite the low dimensionality, the conceptual modeling framework contains outputs for all the atmosphere, ocean, and sea surface temperature components with detailed spatiotemporal patterns. This contrasts with many existing conceptual models focusing only on a small set of specified state variables. The stochastic versions of many traditional low-order models, such as the recharge–discharge and the delayed oscillators, become special cases within this framework. The rigorous derivation of such low-order models provides a unique way to connect models with different spatiotemporal complexities. The framework also facilitates understanding the instantaneous and memory effects of stochastic noise in contributing to the large-scale dynamics of the ENSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call