Abstract

The structure of the matrix elements of the energy–momentum tensor play an important role in determining the properties of the form factors A(q2), B(q2) and C(q2) which appear in the Lorentz covariant decomposition of the matrix elements. In this paper we apply a rigorous frame-independent distributional-matching approach to the matrix elements of the Poincaré generators in order to derive constraints on these form factors as q→0. In contrast to the literature, we explicitly demonstrate that the vanishing of the anomalous gravitomagnetic moment B(0) and the condition A(0)=1 are independent of one another, and that these constraints are not related to the specific properties or conservation of the individual Poincaré generators themselves, but are in fact a consequence of the physical on-shell requirement of the states in the matrix elements and the manner in which these states transform under Poincaré transformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.